文章编号: 1000-4750(2008)11-0100-011

多种混凝土材料的多轴强度模型

*杨健辉^{1,4},杨正浩²,黄辉³,秦本东¹,方坤河⁴

(1. 河南理工大学土木工程学院,河南,焦作 454000; 2. 河南油田工程咨询有限公司,河南,南阳 473132;3. 武汉工业学院土木系,湖北,武汉 430023; 4. 武汉大学水资源与水电工程科学国家重点实验室,湖北,武汉 430072)

摘 要:系统地研究了双剪强度模型的构造特点、边界条件及其应用。其中,利用三参数的确定解模型,可以 推导出平面特征试验点;而通过四参数和六参数的不定解模型,则分别建立了多轴特征强度参数关系方程,并 从理论上得到了多轴等拉强度接近但并不相等的结论。其次,通过对静水应力公式的变换,分别建立了适于平 面和空间应力比例加载条件下的简单强度模型;而由四参数模型则给出了定侧压加载条件下的二轴强度模型。 最后,依据所建立的各种强度模型,在仅知道材料的单轴拉、压强度的极端条件下,给出了推算所有缺失的特 征强度和任意加载条件下的极限强度的两个计算流程图;并据此对多种混凝土的多轴强度进行了验证,其结果 则说明了模型是合理的。

关键词:强度理论;双剪强度理论;多轴强度模型;多轴特征强度参数方程;静水应力;混凝土中图分类号:O346;TU528 文献标识码:A

MULTIAXIAL STRENGTH MODEL OF CONCRETE

^{*}YANG Jian-hui^{1,4}, YANG Zheng-hao², HUANG Hui³, QIN Ben-dong¹, FANG Kun-he⁴

(1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China;

2. Henan Oilfield Engineering Consulting Corporation, Nanyang, Henan 473132, China;

3. Department of Civil Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China;

4. State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China)

Abstract: This paper studies the constructional features, boundary conditions and application requirements of the twin shear strength model. Firstly, the multiaxial strength relationship is derived based on the three-, four- and six-parameter models. Then, the simplified strength model is established to facilitate structural analysis under proportional loading. At last, the proposed multiaxial strength model is proved to be valid.

Key words: strength theory; twin shear strength theory; multiaxial strength model; eigenvalue equation of multiaxial strength parameter; hydrostatic stress; concrete

不论任何工程材料,在其相应的在役结构 中,大多都处于多轴应力状态之中。对混凝土材 料来说,由于混凝土自身所存在的一系列特性, 如离散性大、脆性(或准脆性)、抗压强度远高于抗 拉强度等,使得混凝土的多轴强度,特别是真三 轴强度不易得到,如多轴等拉强度和高强混凝土

收稿日期: 2007-01-02; 修改日期: 2008-04-12

基金项目:河南理工大学博士基金资助项目(6482-24);湖北省高等学校中青年创新团队基金项目(T200604)

作者简介: *杨健辉(1969-),男,河南南阳人,教授,博士后,从事混凝土材料与材性、疲劳与损伤、强度理论等研究(E-mail: yjh.dr@163.com); 杨正浩(1962-),男,河南南阳人,副教授,学士,从事工程咨询研究等(E-mail: zhy1216@163.com);

黄 辉(1978-), 男,河南信阳人,硕士生,从事强度理论研究(E-mail: huihuangtd@163.com);

秦本东(1977-),女,河南南阳人,讲师,硕士,从事混凝土和岩土的本结关系研究(E-mail: luolu219999@163.com);

方坤河(1946一),男,广东普宁人,教授,硕士,中国水力发电工程学会理事,从事混凝土碾压坝研究等(E-mail: khfang@sohu.com).

的三轴等压强度及较大应力比例条件下的三轴受 压强度等。然而,由于现代混凝土结构的需要, 如核电站混凝土安全壳、大坝基础、海洋采油平 台等,又迫切需要深入研究混凝土的多轴强度本 构关系和强度-变形本构关系等,从而实现对材料 强度进行恰当的估计,做到既不浪费材料,又对 结构不造成安全隐患。

自 20 世纪 60 年代以后, 真三轴试验机开始 问世[1-2],我国稍晚并于 1984 年首先由清华大学 研制成功^[3];此后,河海大学^[4]、大连理工大学^[5-6] 等单位相继研制成功。而在此以前,对混凝土的 多轴研究仅局限于常规三轴(伪三轴)如 Föppl (1900 年)。在强度理论研究中,不论是平面应力还是空 间应力,也不论是混凝土或其他工程材料(如金属 等),能正确反映材料的多轴强度的模型是十分困 难的;从各国学者所提出的百种之多破坏准则和 强度模型来看,就说明了这一问题,这也正是强 度理论多变性的根本所在^[7]。虽然这些模型的数学 表达式各不相同,但它们在 π0 平面(过坐标原点且 垂直于静水应力轴的平面)极限线的形状都差不 多,且其极限线都包含在下限单剪强度理论和上 限双剪强度理论之中^[7]。此外,还有大量的基于试 验数据的拟合方程。所谓下限单剪强度理论,亦 就是 Mohr-Columb 理论(1900 年),而上限双剪强 度理论,则是由俞茂宏教授所创建的(1961年-至 今),其阶段性代表作和理论集成可参见文[7-12] 等。到目前为止,尽管模型众多,但所有的模型 均具有一定的局限性,并不能很好地普遍反映材 料的多轴强度特征。

双剪强度理论虽然在理论上具有完美的演化 过程,按其理论表述可以描述已知和未知的所有 可能的强度理论。但其仍存在着许多缺陷,因而 适用性并不强,如对特征试验点的验算或推导这 一简单问题就无法解决;同时,双剪强度理论主 要是建立在正交八面单元体基础之上的,然而关 于正交八面体强度模型及其规律等,双剪强度理 论并没有深入研究。而文[13]以正交八面体和等倾 八面体为两个重要的过渡特征单元体,初步建立 起了广义八面体理论体系;系统地研究了正交八 面体强度模型及规律、广义八面体的变形本构关 系和强度-变形本构关系等内容,补充和完善了双 剪强度理论中的一些重要内容。

本文正是从针对双剪强度模型无法解决特征

试验点的简单问题入手,然后再考虑复杂应力条 件下的极限强度问题,系统地研究双剪强度模型 的构造特点、边界条件及其适应性等。在研究双 剪强度模型的参数变化规律时,发现双剪理论体 系包含有丰富的内容,如可以反映中间应力和静 水应力项等,相应的模型可以准确无误地推导出 特征试验点(多轴等拉强度、等压强度),对二轴定 侧压加载情形,相应的模型均可给出较好的计算 结果。但对于多轴比例加载情形,则很难给出恰 当的模拟结果。通过对二轴定侧压加载和多轴比 例加载的双剪强度模型进行对比研究,发现了基 于静水应力公式,通过变换,在充分反映初始加 载条件的前提下,所得到的简单模型可以很好地 模拟多轴比例加载的极限强度,并由此可以模拟 所有可能的边界条件及其相应的结果,从而为相 关方面的深入研究(如仿真等)提供了极大的便利 条件。

最后,本文以公开文献的多轴强度试验数 据,分别对二轴定侧压加载及二轴和三轴比例加 载情形进行了计算验证。其中,混凝土种类包括 普通混凝土、钢纤维混凝土、大骨料混凝土和钢 纤维轻骨料混凝土。通过大量的试验数据,验证 了模型的合理性。

可推导某一特征试验点的双剪三 参数强度模型

根据双剪理论的基本定义,三组双剪正应力 和双剪主切应力的具体表达式为:

$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2}, \quad i, j = 1, 2, 3, \quad i \neq j, \sigma_{ij} = \sigma_{ji} \quad (1a)$$
$$\sigma_i - \sigma_j \quad \dots \quad 1, 2, 2, \dots \quad \dots \quad (1l)$$

 $\tau_{ij} = \frac{\sigma_i - \sigma_j}{2}$, *i*, *j* = 1, 2, 3, *i* ≠ *j*, $\tau_{ij} = -\tau_{ji}$ (1b) 若 *i* = *j*,则式(1a)表示主应力,式(1b)表示剪

应力为 0, 那么式(1a)和式(1b)统一表示为主平面。

若*i*≠*j*,则式(1a)和式(1b)分别为双剪正应力 和双剪主切应力的表达式,亦即 45°最大剪切破坏 面上的正应力和切应力。

对于双剪三参数强度模型,本文给出以下两种模型 TS311 和 TS312(T 表示双剪应力,S 或 D 表示模型中的双剪应力为单独或成对出现,3 表示 模型为3 参数,第1个1表示本类模型中的第1 个子类模型,最后一个1或2表示本子类模型中 的第1或第2类边界条件。以下类同)。 可推导 *f_{cc}* 的模型 TS311 和可推导 *f_{tt}* 的模型 TS312 的双剪应力形式均为(本文以下各模型中的 符号意义见附录 A):

$$\tau_{13} + \beta_1 \tau_{12} + \beta_2 (\sigma_{13} + \sigma_{12}) = C_1$$
(2)

当以(*f_t*, *f_c*, *f_{tt})为第一类特征试验点时,即为* 模型 TS311,其代数解为:

$$\beta_{1} = \frac{4\gamma - 3\alpha - \alpha\gamma}{\alpha + 3\alpha\gamma}, \ \beta_{2} = \frac{\alpha - \alpha\gamma}{\alpha + 3\alpha\gamma}, \ C_{1} = \frac{2\gamma}{\alpha + 3\alpha\gamma}f_{t} \circ$$

当以 (f_t, f_c, f_c) 为第二类特征试验点时,即为 模型 TS312。则其代数解为:

$$\beta_{1} = \frac{\overline{\alpha} + 3\alpha - 4\alpha\overline{\alpha}}{\overline{\alpha} - \alpha + 4\alpha\overline{\alpha}}, \quad \beta_{2} = \frac{\overline{\alpha} - \alpha}{\overline{\alpha} - \alpha + 4\alpha\overline{\alpha}}$$
$$C_{1} = \frac{2\overline{\alpha}}{\overline{\alpha} - \alpha + 4\alpha\overline{\alpha}}f_{t} \circ$$

由于双剪强度模型具有高度的对称性和边界 条件与模型相适应的严格一致性^[13],因此存在对 偶模型 TS321 和 TS322,这里不再给出。而其他 三参数模型则不能导出某一特征试验点。对于所 有正确的双剪强度模型,在没有特征强度参数相 互关系的条件下,双剪强度模型不能唯一确定某 一特征应力。因此,下文中将给出多轴强度的特 征关系方程。

2 多轴特征强度参数方程

根据线性方程组非满秩的数理意义,亦即模型中相关参数的相互依赖关系,从而造成方程组 不满秩情形。通过双剪四参数和六参数的不定解 模型,分别求得平面特征强度参数(单轴和二轴)关 系方程、二轴和三轴特征强度参数相互关系方程 和所有 6 个特征强度参数的相互关系方程。

不定解模型 TS411 的双剪应力形式如下:

 $\tau_{13} + \theta_1 \tau_{12} + \theta_2 (\sigma_{13} + \sigma_{12}) + \theta_3 \sigma_m = C_2 \qquad (3a)$ 式中, $\sigma_m = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$ (下同,符号意义见附录A)。

以(f_t , f_c , f_{tt} , f_{cc})为边界条件,此时方程组的 秩为非满秩,则特征强度参数方程为:

$$\frac{1}{f_{tt}} + \frac{1}{f_{cc}} = \frac{1}{f_t} + \frac{1}{f_c}$$
(3b)

由该模型计算 f_{tt} 或 f_{cc} 与由模型 TS312 和 TS322 或 TS311 和 TS321 的计算结果相同,由此 建立起了单轴与二轴特征强度参数的相互关系。

$$\tau_{13} + \tau_{12} + \xi_1 \sigma_{23}^2 + \xi_2 (\sigma_{13} + \sigma_{12}) + \xi_3 \sigma_m = C_3 \quad (4a)$$

以(*f_u*,*f_{cc}*,*f_{ut}*,*f_{ccc})为边界条件,同样该方程 组为非满秩,因此,求得特征强度参数间的隐含 关系式为:*

$$\frac{2}{f_{cc}} + \frac{4}{f_{ttt}} - \frac{4}{f_{tt}} = \frac{1}{f_{ccc}} \left(\frac{2f_{cc} - f_{tt}}{f_{ttt}} + 4 \right)$$
(4b)

由式(4b)将二轴和三轴特征强度参数关系联系 了起来。但是,若无 f_{ttt} 或 f_{ccc} 试验值,如何恰当 确定 f_{ccc} 或 f_{ttt} 的值。进一步地,若无 f_{tt} 和 f_{cc} 试 验值的前提下,如何恰当确定 f_{cc} 和 f_{tt} 的值,或者 通过什么样的评价标准去判断取值是否合理,将 是一个重要问题。

为了全面反映多轴强度参数间的关系,取双 剪六参数的不定解模型 TD611,其双剪应力表达 式如式(5a)所示。

$$\tau_{13} + \tau_{23} + \psi_1(\sigma_{13} + \sigma_{23}) + \psi_2\sigma_m + \psi_3\sigma_{12}^2 +$$

 $\psi_4(\sigma_{13} + \sigma_{23})^2 + \psi_5(\sigma_{13} + \sigma_{23})^3 = C_4$ (5a) 以 $(f_t, f_c, f_u, f_{cc}, f_{ut}, f_{ccc})$ 为边界条件,方程组 非满秩,则多轴强度间的关系方程为:

$$\frac{S_2 P_1 - S_1 P_2}{N_2 P_1 - N_1 P_2} = \frac{S_1 P_3 - S_3 P_1}{N_1 P_3 - N_3 P_1}$$
(5b)

其中,式中的每一项均为计算过程中的上一步的 代数表达式,具体过程详见附录 B。

鉴于式(5b)不能给出 f_{ttt} 或 f_{ccc} 的显式解, 这 就要求在求 f_{ttt} 或 f_{ccc} 时, 需要对式(5b)进行判 断,若式(5b)成立,则说明多轴特征强度的所有取 值合理。但由于截断误差和累积误差的影响, 很 难使式(5b)完全成立。此时,应给出一个相对误差 界作为判断条件,比如取式(5b)的(左边值-右边 值)/左边值×100%作为相对误差,若相对误差小于 5%,则判断多轴特征强度间的关系正确。

3 定侧压加载方式下的二轴压极限 强度模型

本文采用以下两个双剪四参数多项式强度模型对平面定侧压情形进行讨论。模型 TD411 的双 剪应力形式为:

$$\begin{split} \tau_{13} + \tau_{23} + \chi_1(\sigma_{13} + \sigma_{23}) + \chi_2(\sigma_{13} + \sigma_{23})^2 + \chi_3 \sigma_{12}^2 &= C_5 \\ (6a) \\ & \cup (f_t, f_c, f_{tt}, f_{cc})$$
为边界条件,则其代数解为:
$$\chi_1 &= 8\overline{\alpha}(\alpha + 2\gamma)X - 1, \\ \chi_2 &= \frac{2\alpha}{f_t} \{ 4\overline{\alpha} [(\alpha + 2)(\gamma + 1) - 2]X - 1 \}, \end{split}$$

$$\chi_3 = \frac{2\alpha}{f_t} [1 - 4\overline{\alpha}(\alpha + 2)(\gamma + 1)X], \quad C_5 = 8\overline{\alpha}\gamma X f_t,$$

If the

所以模型不会退化。

对定侧压双轴压情形,将式(6a)变换为:

$$4\chi_2\sigma_3^2 + 4(\chi_2\sqrt{\phi}f_c\sigma_{2out} + B_1)\sigma_3 + A_1\phi f_c\sigma_{2out} +$$

 $2\sqrt{\phi f_c \sigma_{2out}} (B_1 + 2) - 4C_5 = 0$ (6b) 式中, $A_1 = \chi_2 + \chi_3$, $B_1 = \chi_1 - 1$ 。当利用式(6b)计 算极限强度 σ_3 时,将 σ_2 变换为 $\sqrt{\sigma_{2in}\sigma_{2out}}$,其中 σ_{2in} 为设定输入侧压值,并以 $\sigma_{2in} = \phi f_c$ 表示, ϕ 为设定侧压比, σ_{2out} 为试件破坏时输出侧压值 (下同)。

模型 TD411 的对偶模型 TD421 的双剪应力形 式为:

$$\begin{split} X &= \frac{2\gamma - \alpha}{\gamma^2 [(\alpha + \overline{\alpha})(4 - \alpha) + 9\alpha \overline{\alpha}] - \alpha^2 [3\gamma(2\overline{\alpha} + 1) + 2\overline{\alpha}]} \\ & \square \alpha \neq 2\gamma , \ \square \ f_t \neq 2f_{tt} , \ \text{ 亦 } \square \ \text{ f} \ f_t \approx f_{tt} \approx f_{tt} \\ f_{ttt} , \ \text{ 所以该模型不会退化}. \end{split}$$

対定側压双轴压情形,将式(7a)变换为:

$$A_2\sigma_3^2 + 2(B_2 + A_2\sqrt{\phi f_c\sigma_{2out}})\sigma_3 + 2B_2\sqrt{\phi f_c\sigma_{2out}} + \phi f_c\sigma_{2out}A_2 - 4C_6 = 0$$
 (7b)
式中: $A_2 = v_2 + v_3$, $B_2 = v_1 - 1$ 。

在利用模型 TD411 和 TD421 对二轴定侧压加 载条件下进行计算验证可知,预测结果与试验值 较为符合(特别是低应力条件下符合较好)。但根据 双剪强度模型的边界条件与其适应性严格一致的 特点^[13],对比例加载条件下的试验值进行验证 时,则发现其误差太大,因而不适于比例加载条件 下的极限强度模型。但另外也发现了,对于二轴 定侧压加载条件下的极限强度模型必须考虑初始 条件。通过进一步地对比研究发现,在考虑初始 条件的情况下,对静水应力公式进行变换,则相 应的变换公式可较好地模拟所有比例加载条件下 的极限强度,从而可以摆脱一般基于试验数据的 拟合方程或者是其他过于复杂的模型。

4 比例加载方式下的平面与空间极限 强度模型

根据比例加载条件下,材料的极限强度与初 始边界条件基本一致,即极限强度一般均与侧向 应力成简单的线性比例关系,因此,极限强度很 容易推算得到。通过上文分析,由静水应力公式 并考虑初始边界条件,对静水应力公式进行变 换,其变换公式可分别适于比例加载条件下的平 面和空间应力条件下的极限强度模型,即:

平面压压:

$$\sigma_3 = \frac{1 + \omega_2}{1 + 1/\omega_2} \sigma_2, \quad \omega_2 = \frac{\sigma_3}{\sigma_2}$$
(8a)

平面拉压:

$$\sigma_1 = \frac{1 + 1/\omega_1}{1 + \omega_1} \sigma_3, \quad \omega_1 = \frac{\sigma_3}{\sigma_1}$$
(8b)

空间压压压或拉拉压:

 σ_1

$$\sigma_3 = \frac{\sqrt{\sigma_1 \sigma_2 (1 + \omega_1 + \omega_3)(1 + \omega_2 + 1/\omega_3)}}{1 + 1/\omega_1 + 1/\omega_2},$$

$$\omega_3 = \frac{\sigma_2}{\omega_3}$$
(8c)

空间拉压压或拉拉拉:

$$\sigma_1 = \frac{\sqrt{\sigma_2 \sigma_3 (1 + \omega_2 + 1/\omega_3)(1 + 1/\omega_1 + 1/\omega_2)}}{1 + \omega_1 + \omega_3} \quad (8d)$$

5 多轴强度模型的计算流程

一般地,对于低强度等级的材料,在真三轴 试验机上可以较为准确地获得 f_t 、 f_c 、 f_{cc} 和 f_{ccc} 试验值;而对于强度等级较高的材料,则可较为 准确地获得 f_t 、 f_c 、 f_{cc} 或 f_u 和 f_{ut} 试验值;其他未 知特征强度参数,以及极端情况下,在只有 f_t 和 f_c 值时,仍可利用本文所提出的强度模型,计算 出相应缺少的特征值及复杂应力条件下的所有可 能的极限强度值。其计算流程如图 1、图 2 所示。

轴抗拉强度接近,虽然不同的文献中给出的具体 倍数有所差异。如文[14]认为混凝土的多轴抗拉强 度应低于車轴抗拉强度,只在少数情况下会出现 相等的可能; 文[15]认为在任意应力比例下,二轴 抗拉强度与其单轴抗拉强度接近,三轴抗拉强度 略低于单轴抗拉强度; 文[16]认为三轴等拉强度与 单轴抗拉强度相等; 而文[17]则认为三轴等拉强度 仅相当于单轴抗拉强度的 0.7 倍, 文[18]只取三轴 等拉强度为单轴的 0.9 倍。

根据计算流程 I,若仅知单轴拉强度、压强度 时,可首先假定 $f_{tt} = \eta_1 f_t$,由式(3b)计算 f_{cc} ;再 假定 $f_{tt} = \eta_2 f_t$,由式(4b)计算 f_{ccc} ;再由式(5b)判 断材料的特征强度参数的相容性。如果超过规定 的误差范围,则调整 $\eta_1 \ \eta_2$,并重新计算,最后 得到同一强度等级的混凝土如下多轴强度关系: $f_{tt} = \eta_1 f_t \ f_{ttt} = \eta_2 f_t \ f_{cc} = \eta_3 f_c \ m f_{ccc} = \eta_4 f_c$ 。

事实上,由式(3b)可知,若 $f_t = f_u$,则必有 $f_c = f_{cc}$ 。对普通混凝土材料来说,一般有 $f_{cc} > f_c$, 所以有 $f_t > f_u$,亦即 $\eta_1 < 1$ 。

根据 Kupfer 等(1969 年)所给出的混凝土双轴 压强度模型,则有 $\eta_3 \approx 1.2$;而 Rosenthal(1970 年) 所给出的模型为 $\eta_3 \approx 2.2$;过镇海等(1996 年)所给 出的模型则为 $\eta_3 \approx 1.3$ 。因此,若以 Rosenthal 所 给出的模型为上限,则有 $1 < \eta_3 \leq 2.2$ 。从设计上 偏安全的角度,可取 Kupfer 的取值 $\eta_3 = 1.2$ 。对三 轴受压,文[18]给出的最高设计值为 $\eta_4 = 5.0$ 。

再根据文[18], 取 α =0.09(C20-C55的平均 值), η_2 =0.9,则由式(3b)可得 η_1 =0.985。因此有 0.9 $\leq \eta_2 < \eta_1 < 1$,亦即 $f_t > f_{tt} > f_{tt}$,说明多轴等拉强度 虽然接近但不相等。据此,可对式(3b)、式(4b)作 进一步地变换,则有:

$$\eta_1 = \frac{1}{1 + \alpha(1 - 1/\eta_3)} = \frac{\eta_3}{\eta_3 + \alpha(\eta_3 - 1)}$$
(9a)

即:

$$\alpha = \frac{1/\eta_1 - 1}{1 - 1/\eta_3} = \frac{\eta_3(1 - \eta_1)}{\eta_1(\eta_3 - 1)}$$
(9b)

$$\eta_{4} = \frac{2\frac{\eta_{3}}{\eta_{2}} + \alpha \left(4 - \frac{\eta_{1}}{\eta_{2}}\right)}{4\left(\frac{1}{2} - \frac{1}{2}\right) + 2\frac{\alpha}{2}}$$
(9c)

$$\alpha = \frac{2\eta_3}{\eta_1} \frac{2\eta_4(\eta_1 - \eta_2) - \eta_1\eta_3}{\eta_3(4\eta_2 - \eta_1) - 2\eta_2\eta_4}$$
(9d)

令式(9b)和式(9d)相等,则得:

$$\eta_4 = \eta_3 \frac{A\left(2\eta_2 - \frac{\eta_1}{2}\right) + \eta_1}{2(\eta_1 - \eta_2) + A\eta_2}, \quad A = \frac{1 - \eta_1}{\eta_3 - 1}$$
(9e)

根据以上取值,利用式(4b)或式(9c)或式(9e), 可得 η_4 ≈5.49。与文[18]的最高设计限制值接近 (偏于安全)。但实际情况可能往往高于这一值。 由于混凝土的多轴强度与单轴强度的密切联 系,即由式(3b)、式(4b)、式(5b)和式(9d)等可知, 多轴强度是单轴强度的反映,单轴强度则蕴含有 多轴强度的特征。因此,若分别给定 α 、 η_1 、 η_2 和 η_3 任意两个的不同估计值,那么 η_4 的变化范围 可能很大;其他情况亦然。

6 算例

6.1 定侧压混凝土二轴受压的极限强度

采用文[19]的原始试验数据,并分别利用式 (6b)和式(7b),对定侧压下混凝土二轴受压的极限 强度进行计算,如表 1 所示。其特征试验值为: f_t =3.14MPa, f_c =34.2MPa, f_{cc} =40.7MPa。

表1 单侧压下混凝土受压强度试验和计算值比较 /MPa

 Table 1
 Comparison of test and computational compressive

strength under lateral pressure

	$0.2f_c$	$0.4f_c$	$0.6 f_{c}$
$-\sigma_2$	9.02	19.29	30.02
$-\sigma_3$	45.11	48.22	50.03
<i>-o</i> ₃ # (式(6b))	41.70	52.29	64.41
相对误差	-7.6	8.4	28.1
<i>o</i> ₃ и (式(7b))	42.05	50.44	59.02
相对误差	-6.8	4.6	18.0
式(6b)、式(7b)均值	41.88	51.37	61.72
相对误差	7.2	6.5	23.1

注:1)相对误差 E_r=(计算值-试验值)/试验值×100%(下同);
2)数据均取原始数据的平均值(下同);
3)对原始试验数据中的异常值没有剔除(下同)。

由表 1 的计算结果可知,两种相应的模型均 可适应,再次说明了双剪强度模型的对称性,因 而计算时可选择其中之一,也可取二者的平均 值。从有限的三个试验数据的计算结果来看,只 有一个数据的相对误差较大,或许说明原始试验 数据就存在较大的误差,或者是其他原因,因该 批试验数据太少,尚无法做出进一步地判断。此 外,由于文献中没有三轴定侧压加载的详细试验 数据,因此,这里不再给出该情形的算例,但其 模型可参见文[13]。

6.2 比例加载条件下全级配大骨料混凝土的二轴 拉压极限强度

采用文[14]中的大骨料混凝土的二轴拉压原始 试验数据,由式(8b)进行计算,如表 2 所示。其 中,特征试验值为:试件尺寸为 450mm×450mm× 1200mm 的全级配混凝土(表 2 中代号为 A_1)的 $f_t=1.15$ MPa, $f_c=11.17$ MPa;试件尺寸为 450mm× 450mm×1200mm 的湿筛二级配混凝土(表 2 中代号 /MPa

为 A₂)的 f_t =1.25MPa, f_c =13.59MPa; 试件尺寸为 150mm×150mm×300mm 的湿筛二级配混凝土(表 2 中代号为 A₃)的 f_t =1.84MPa, f_c =14.83MPa(原试验 方法依据水工混凝土试验规程 SD108-1982); 试件 尺寸为 150mm×150mm×300mm 的湿筛全级配混凝 土(表 2 中代号为 A₄)的 f_t =2.156MPa, f_c = 21.11MPa; 试件尺寸为 200mm×200mm×200mm 的 湿筛全级配混凝土(表 2 中代号为 A₅)的 f_t =1.29MPa, f_c =20.00MPa; 试件尺寸为 450mm× 450mm×450mm 的全级配混凝土(粗骨料粒径 5mm-150mm, 表 2 中代号为 A₆)的 f_t =0.896MPa, f_c =14.27MPa, 表 2 中代号为 A₇的试件尺寸为 450mm×450mm×700mm, 其他同 A₆。

表 2 比例加载方式下混凝土二轴拉压极限 强度试验与计算值

 Table 2
 Test and computational values of concrete tensile and compressive strength under biaxial proportional loading

代号	σ_1 : σ_3	σ_1	$-\sigma_3$	σ_1 #	E_r
	-0.05:1	0.34	7.03	0.35	3.4
	-0.10:1	0.56	5.97	0.60	6.6
A_1	-0.15:1	0.68	4.55	0.68	0.4
	-0.20:1	0.77	3.94	0.79	2.3
	-0.35:1	0.70	2.06	0.72	3.0
	-0.05:1	0.42	8.68	0.43	3.3
	-0.10:1	0.56	5.93	0.59	5.9
A_2	-0.20:1	0.78	3.93	0.79	0.8
	-0.35:1	1.00	2.99	1.05	4.7
	-0.05:1	0.58	10.30	0.52	-11.2
	-0.10:1	0.87	9.33	0.93	7.2
A ₃	-0.20:1	1.07	6.16	1.23	15.1
	-0.25:1	1.35	5.72	1.43	5.9
	-0.35:1	1.35	4.08	1.43	5.8
	-0.27:1	1.29	4.76	1.29	-0.4
	-0.24:1	1.47	6.12	1.47	-0.1
	-0.39:1	1.96	5.00	1.95	-0.5
	-0.25:1	1.04	4.13	1.03	-0.7
	-0.09:1	0.60	6.63	0.60	-0.6
A4	-0.08:1	0.49	6.23	0.50	1.7
	-0.10:1	0.71	7.14	0.71	0.6
	-0.04:1	0.33	8.67	0.35	5.1
	-0.02:1	0.32	17.80	0.36	11.3
	-0.04:1	0.45	11.00	0.44	-2.2
	-0.10:1	0.65	6.33	0.63	-2.6
	-0.29:1	1.23	4.32	1.25	1.9
	-0.15:1	0.83	5.40	0.81	-2.4
	-0.06:1	0.53	8.95	0.54	1.3
A_5	-0.18:1	1.00	5.56	1.00	0.1
	-0.15:1	1.11	7.56	1.13	2.2
	-0.23:1	0.23	10.37	2.39	937
	-0.40:1	0.23	5.86	2.34	919
	-0.20:1	0.50	5.56	1.11	122

					(续表)
代号	σ_1 : σ_3	σ_1	$-\sigma_3$	σ1 μ	E_r
	-0.10:1	2.60	3.25	0.33	-87.5
	-0.15:1	0.40	2.70	0.41	1.3
	-0.06:1	0.31	5.00	0.30	-3.2
A_6	-0.01:1	0.31	3.80	0.04	-87.7
	-0.05:1	0.22	5.00	0.25	13.6
	-0.08:1	0.36	4.60	0.37	2.2
	-0.30:1	0.60	2.00	0.60	0.0
A ₇	-0.10:1	0.63	6.42	0.64	1.9

从表 2 的计算结果来看,在 A₅中有 3 个值明 显异常。若去掉这 3 个特别异常值,则相对误差 大于 10%的数据只有 6 个,占总数 41 个的 14.6%。这也说明了,利用式(8b)可以对试验过程 中的异常值进行判断并剔除。

6.3 比例加载条件下混凝土的三轴极限强度

采用文[14]的原始试验数据及计算结果如表 3 所示。其中,特征试验值为: $f_t=2.17$ MPa, $f_c=23.48$ MPa, $f_{ttt}=1.55$ MPa。

表 3 比例加载方式下混凝土三轴极限 强度试验与计算值

/MPa

 Table 3
 Test and computational values of concrete strength under triaxial proportional loading

初始条件	三轴压/压/压(由式(8c)计算)					
σ_1 : σ_2 : σ_3	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	<i>−σ</i> _{3 #}	E_r	
0.1:0.1:1	5.546	5.369	52.43	54.57	4.1	
0.1:0.25:1	7.32	17.5	73.6	71.58	-2.7	
0.1:0.3:1	7.815	21.38	71.77	74.63	4.0	
0.1:0.5:1	7.0	34.5	70.2	69.50	-1.0	
0.1:0.75:1	6.19	46.95	62.13	62.25	0.2	
0.1:1:1	6.13	61.66	61.71	61.48	-0.4	
0.25:0.25:1	39.20	36.716	149.35	151.75	1.6	
0.25:0.3:1	46.5	56.69	188.01	187.48	-0.3	
0.25:0.75:1	46.473	90.194	187.28	149.51	-20.2	
0.1:1:1	6.13	61.66	61.71	61.48	-0.4	
0.25:0.25:1	39.20	36.716	149.35	151.75	1.6	
0.25:0.3:1	46.5	56.69	188.01	187.48	-0.3	
0.25:0.75:1	46.473	90.194	187.28	149.51	-20.2	
0.25:1:1	42.89	173.17	176.165	172.36	-2.2	
0.3:1:1	23.95	79.038	79.886	79.43	-0.6	
初始条件		三轴拉/归	玉/压(由式(8d)计算)		
$\sigma_1:\sigma_2:\sigma_3$	$-\sigma_2$	$-\sigma_3$	σ_1	σ1 #	E_r	
0.5:-1:-1	1.935	1.712	0.866	0.91	5.1	
0.75:-1:-1	1.419	1.295	1.12	1.02	-9.2	
1:-1:-1	1.207	1.717	1.204	1.44	20.0	
0.25:-1:-1	2.57	2.718	0.555	0.66	19.0	
初始条件		三轴拉/打	立/压(由式((8c)计算)		
σ_1 : σ_2 : σ_3	σ_1	σ_2	$-\sigma_3$	<i>−σ</i> ₃ ⊬	E_r	
0.5:0.5:-1	1.12	1.12	2.24	2.24	0.0	
0.75:0.75:-1	1.35	1.35	1.80	1.80	0.0	

					(续 表)	
初始条件	三轴拉/拉/压(由式(8c)计算)					
$\sigma_1:\sigma_2:\sigma_3$	σ_1	σ_2	$-\sigma_3$	−σ ₃ µ	E_r	
0.25:0.25:-1	1.15	1.15	4.61	4.60	-0.2	
0.1:0.05:-1	0.97	0.48	9.72	9.65	-0.7	
0.5:0.5:-1	2.16	2.16	4.31	4.32	0.2	
0.05: 0.05: -1	0.48	0.48	9.64	9.60	-0.4	
1:0.1:-1	2.70	0.27	2.70	2.70	0.0	
0.5:0.1:-1	1.80	0.24	2.40	2.94	22.5	
初始条件	三轴拉/拉/拉(由式(8d)计算)					
$\sigma_1:\sigma_2:\sigma_3$	σ_2	σ_3	σ_1	σ1 μ	E_r	
1:0.25:0.25	0.53	0.53	2.12	2.12	0.0	
1:0.5:0.5	1.165	1.165	2.33	2.33	0.0	

注: 1) 由于文[14]没有给出混凝土的原始配比和具体试验概况 , 且原始试验数据可能不是来自同批试件,因单轴抗压强度并 不相等,同时还由于单轴抗拉强度和三轴等拉强度可能太 低,因原始三轴非等拉强度已经大于单轴抗拉强度,所以这 里取二轴和三轴等拉强度的估计值。其中 η₁=0.985, η₂= 0.9, η₃=1.2, η₄=13.65(η₄ 可能偏高,是因为按式(5b)验证时 取较高的精度 5%所致,若取较低的精度,η₄ 将降低); 2) 利 用式(8c)、式(8d)计算时,ω₁、ω₂、ω₃均取其绝对值(下同)。

从表3的计算结果可知,相对误差大于10%的 数据有4个,占总数29个的13.8%,而且小于 10%的误差大多接近于0。说明通过比例加载方式 下的简单的三轴极限强度模型,可以很好地预测 不同加载比例下的极限强度。

6.4 比例加载条件下钢纤维混凝土的三轴极限强度

采用文[14]中的钢纤维混凝土的原始试验数据 及其计算结果如表 4 所示。其特征试验值分别为: 纲纤维掺量为 1%时, f_c =27.0MPa, f_{ttt} =1.72MPa; 掺量为 0.5%时, f_c =26.5MPa; 掺量为 1.5%时, f_c =30.0MPa; 掺量为 2.0%时, f_c =26.0MPa; 掺量 为 2.5%时, f_c =32.8MPa。

表 4 比例加载方式下钢纤维混凝土三轴极限 强度试验与计算值

 Table 4
 Test and computational values of steel fiber concrete strength under triaxial proportional loading

初始条件	钢纤维掺量: 1.0%						
σ_1 : σ_2 : σ_3	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	−σ _{3 ₩}	E_r		
0.1:0.1:1	6.31	7.08	59.84	66.84	11.7		
0.1:0.25:1	8.17	17.84	71.09	76.36	7.4		
0.1:0.5:1	12.47	43.63	84.74	104.31	23.1		
0.1:0.75:1	7.19	50.63	71.99	69.67	-3.2		
0.1:1:1	7.13	55.64	61.21	62.99	2.9		
0.25:0.25:1	37.82	45.29	153.13	165.55	8.1		
0.25:0.3:1	36.79	43.47	178.80	146.03	-18.3		
0.25:0.5:1	43.72	84.98	168.54	172.40	2.3		
	$-\sigma_2$	$-\sigma_3$	σ_1				
0.25:-1:-1	5.00	5.55	1.38	1.32	-4.6		
0.5:-1:-1	3.76	4.00	2.14	1.94	-9.4		
0.75:-1:-1	2.44	2.79	1.83	1.96	6.9		
1:-1:-1	2.07	2.32	2.12	2.19	3.4		

				(续 表)
	σ_1	σ_2	$-\sigma_3$	−σ _{3 ₩}	E_r
0.25:0.1:-1	1.16	0.46	4.62	4.62	0.0
0.5:0.1:-1	2.18	0.44	4.35	4.38	0.9
0.75:0.1:-1	2.78	0.37	3.70	3.70	0.1
1:0.1:-1	3.20	0.32	3.20	3.20	0.0
0.25:0.25:-1	0.78	0.78	3.10	3.12	0.6
0.75:0.75:-1	1.79	1.79	2.39	2.39	-0.1
	σ_2	σ_3	σ_1	σ_1 #	E_r
1:0.25:0.25	0.64	0.64	2.56	2.56	0.0
1:0.5:0.5	1.34	1.34	2.67	2.68	0.4
1:0.75:0.75	1.41	1.41	1.88	1.88	0.0
初始条件		钢纤	维掺量:2	2.0%	
σ_1 : σ_2 : σ_3	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	<i>−σ</i> ₃ µ	E_r
0.1:0.1:1	6.27	7.24	59.09	67.38	14.0
0.1:0.25:1	7.71	16.25	67.67	70.79	4.6
0.1:0.5:1	8.96	34.81	70.63	78.98	11.8
0.1:0.75:1	7.55	44.11	59.41	66.64	12.2
	$-\sigma_2$	$-\sigma_3$	σ_1	<i>σ</i> 1 ₩	E_r
0.25:-1:-1	5.54	5.98	1.42	1.44	1.3
0.5:-1:-1	3.72	3.94	1.72	1.91	11.3
1:-1:-1	1.59	1.81	1.94	1.70	-12.6
初始条件		钢纤	维掺量:().5%	
σ_1 : σ_2 : σ_3	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	−σ _{3 ₩}	E_r
0.1:0.1:1	5.75	6.18	50.84	59.61	17.3
0.1:0.25:1	7.86	16.55	59.81	72.13	20.6
0.1:0.5:1	7.72	29.75	60.59	67.77	11.9
0.1:0.75:1	7.05	43.23	61.83	63.75	3.1
0.1:1:1	6.11	54.47	56.43	57.69	2.2
0.25:0.25:1	34.57	33.10	128.34	135.31	5.4
	$-\sigma_2$	$-\sigma_3$	σ_1	σ1 #	E_r
0.25:-1:-1	5.65	6.04	1.43	1.46	2.1
0.75:-1:-1	3.34	3.62	2.66	2.61	-2.0
0.5:-1:-1	4.57	4.91	2.27	2.39	4.3
1:-1:-1	2.51	2.81	2.68	2.66	-0.9
初始条件		钢纤	"维掺量:	1.5%	
$\sigma_1:\sigma_2:\sigma_3$	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	-σ _{3 #}	E_r
$0.1 \div 0.1 \div 1$	8.08	6.86	62.40	74.45	19.3
0.1:0.25:1	7.63	17.67	69.21	73.44	6.1
0.1:0.5:1	8.43	34.33	69.13	76.08	10.1
0.1:0.75:1	7.93	51.87	68.03	74.06	8.9
0.1 • 1 • 1	6.40	55.43	52.19	59.56	14.1
	$-\sigma_2$	$-\sigma_3$	σ_1		
0.25:-1:-1	6.46	6.94	1.59	1.67	5.3
0.7511	3.51	4.09	1.69	2.84	68.1
0.511	2.62	2.88	1.83	1.37	-24.9
		钢纤	细疹重:	2.3%	
	$-\sigma_1$	-σ ₂	<i>-σ</i> ₃	-σ ₃ μ	E _r
0.1 • 0.1 • 1	6.90	5.34	51.20	60.70	18.6
$0.1 \cdot 0.25 \cdot 1$	6.68	16.80	13:18	67.00	-9.2
$0.1 \cdot 0.3 \cdot 1$ 0 1 · 0 75 · 1	1.55	53.60 52.05	00./3	/1.23	6./
0.1 • 0.73 • 1	1.89	32.05	09.20	/4.00	<u>о.</u> у
0.25 * 1 * 1	-σ ₂	- 0 3	σ ₁	σ ₁ #	<i>E</i> _r
$0.23 \cdot -1 \cdot -1$	4.82	5.21	1.07	1.25	1/.1
$0.75 \cdot -1 \cdot -1$	2.81	5.12 2.45	1.09	1.26	20.0
1:-1:-1	2.39	2.03	2 41	1.20	-30.9 -22.4
	1.05	1./1	<u>~.</u> , 1 1	1.07	

/MPa

表 4 中共有 54 个试验数据,相对误差大于 10%的有 20 个,占总数的 37.0%。

6.5 钢纤维轻骨料混凝土的三轴极限强度

采用文[14]中的钢纤维轻骨料混凝土的原始试 验数据及其计算结果如表 5 所示。其中:纲纤维 掺量为 1%时, f_c =21.6MPa, f_{ccc} =160.9MPa;掺量 为 0.5%时, f_c =18.4MPa;掺量为 1.5%时, f_c = 19.5MPa;掺量为 2.0%时, f_c =20.0MPa;掺量为 2.5%时, f_c =17.4MPa。

表 5 比例加载方式下钢纤维轻骨料混凝土三轴极限强度 试验与计算值 /MPa

Table 5Test and computational values of steel fiber light
concrete strength under triaxial proportional loading

彻始余件		钢纤维掺量:	1.0%(目	日式(8c)计算)	
σ_1 : σ_2 : σ_3	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	-σ ₃ μ	E_r
0.1:0.1:1	2.60	2.87	27.19	27.32	0.5
0.1:0.25:1	3.54	7.72	32.50	33.06	1.7
0.1:0.5:1	3.79	16.77	33.36	35.65	6.9
0.1:0.75:1	3.85	25.21	33.68	35.97	6.8
0.1:1:1	4.89	31.13	32.14	39.02	21.4
0.25:0.25:1	11.47	12.77	45.65	48.41	6.0
0.25:0.5:1	12.73	24.67	48.73	50.12	2.9
0.25:0.75:1	15.88	41.64	55.36	59.39	7.3
0.25:1:1	12.10	45.25	44.48	46.80	5.2
0.5:0.5:1	60.39	60.00	121.69	120.39	-1.1
0.75:0.75:1	114.39	113.71	154.37	152.07	-1.5
初始条件		钢纤维掺量:	1.0%(由	日式(8d)计算)	
$\sigma_1:\sigma_2:\sigma_3$	$-\sigma_2$	$-\sigma_3$	σ_1	σ_1 #	E_r
0.25:-1:-1	2.75	3.00	0.78	0.72	-7.9
0.5:-1:-1	1.86	1.90	1.17	0.94	-19.7
0.75:-1:-1	2.17	2.11	1.56	1.60	2.9
1:-1:-1	1.87	1.71	1.69	1.79	5.8
初始条件		钢纤维掺量:	0.5%(目	目式(8c)计算)	
$\sigma_1:\sigma_2:\sigma_3$	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	-σ ₃ μ	E_r
0.1:0.1:1	3.23	3.29	29.19	32.60	11.7
$0.1 \div 0.1 \div 1$ $0.1 \div 0.25 \div 1$	3.23 4.75	3.29 8.91	29.19 35.66	32.60 41.14	11.7 15.4
0.1 : 0.1 : 1 0.1 : 0.25 : 1 0.1 : 0.5 : 1	3.23 4.75 4.13	3.29 8.91 20.15	29.19 35.66 38.33	32.60 41.14 40.80	11.7 15.4 6.4
0.1 : 0.1 : 1 0.1 : 0.25 : 1 0.1 : 0.5 : 1 0.1 : 0.75 : 1	3.23 4.75 4.13 3.28	3.29 8.91 20.15 24.63	29.19 35.66 38.33 33.08	32.60 41.14 40.80 32.82	11.7 15.4 6.4 -0.8
0.1 : 0.1 : 1 0.1 : 0.25 : 1 0.1 : 0.5 : 1 0.1 : 0.75 : 1 0.1 : 1 : 1	3.23 4.75 4.13 3.28 3.08	3.29 8.91 20.15 24.63 29.03	29.19 35.66 38.33 33.08 29.88	32.60 41.14 40.80 32.82 29.90	11.7 15.4 6.4 -0.8 0.1
0.1:0.1:1 0.1:0.25:1 0.1:0.5:1 0.1:0.75:1 0.1:1:1 初始条件	3.23 4.75 4.13 3.28 3.08	3.29 8.91 20.15 24.63 29.03 钢纤维掺量:	29.19 35.66 38.33 33.08 29.88 1.5%(#	32.60 41.14 40.80 32.82 29.90 日式(8c)计算)	11.7 15.4 6.4 -0.8 0.1
0.1:0.1:1 0.1:0.25:1 0.1:0.5:1 0.1:0.75:1 0.1:1:1 初始条件 $\sigma_1:\sigma_2:\sigma_3$	$3.23 4.75 4.13 3.28 3.08 -\sigma_1$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: -\sigma ₂	29.19 35.66 38.33 33.08 29.88 $1.5\%(\pm -\sigma_3)$	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) -\sigma ₃ #	11.7 15.4 6.4 -0.8 0.1 E_r
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ \hline 0.1:1:1\\ \hline 0.1:\sigma_2:\sigma_3\\ \hline 0.1:0.1:1\\ \end{array}$	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.57$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: -σ ₂ 2.90	29.19 35.66 38.33 33.08 29.88 $1.5\%(\pm -\sigma_3)$ 29.84	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) -\sigma ₃ 11 32.18	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline E_r \\ 7.8 \\ \end{array} $
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ \hline 0.1:1:1\\ \hline 0.1:1:1\\ \hline 0.1:\sigma_2:\sigma_3\\ \hline 0.1:0.1:1\\ 0.1:0.25:1\\ \end{array}$	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.573.57$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: - <i>σ</i> ₂ 2.90 8.33	29.19 35.66 38.33 33.08 29.88 $1.5\%(\pm -\sigma_3)$ 29.84 33.34	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) -\sigma ₃ # 32.18 34.49	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline E_r \\ 7.8 \\ 3.4 \\ \end{array} $
$0.1:0.1:1$ $0.1:0.25:1$ $0.1:0.5:1$ $0.1:0.75:1$ $0.1:1:1$ $0.1:\sigma_2:\sigma_3$ $0.1:0.1:1$ $0.1:0.25:1$ $0.1:0.5:1$	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.573.574.06$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: 	29.19 35.66 38.33 33.08 29.88 1.5%(#) - σ_3 29.84 33.34 36.11	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) -\sigma ₃ # 32.18 34.49 38.53	$ \begin{array}{c} 11.7 \\ 15.4 \\ -0.8 \\ 0.1 \\ \hline \\ \hline$
$0.1:0.1:1$ $0.1:0.25:1$ $0.1:0.5:1$ $0.1:0.75:1$ $0.1:1:1$ $0.1:\sigma_2:\sigma_3$ $0.1:0.1:1$ $0.1:0.25:1$ $0.1:0.5:1$ $0.1:0.75:1$	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.573.574.063.17$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: -σ ₂ 2.90 8.33 18.28 22.54	29.19 35.66 38.33 33.08 29.88 $1.5\%(\pm$ 29.84 33.34 36.11 30.38	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) - <i>σ</i> ₃ µ 32.18 34.49 38.53 30.87	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline$
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline M 6 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.574.063.173.23$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: 	29.19 35.66 38.33 33.08 29.88 $1.5\%(\pm)$ - σ_3 29.84 33.34 36.11 30.38 31.68	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) 一	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ F_r \\ 7.8 \\ 3.4 \\ 6.7 \\ 1.6 \\ -2.1 \\ \end{array} $
$0.1:0.1:1$ $0.1:0.5:1$ $0.1:0.5:1$ $0.1:0.75:1$ $0.1:1:1$ 初始条件 $\sigma_1:\sigma_2:\sigma_3$ $0.1:0.1:1$ $0.1:0.1:1$ $0.1:0.5:1$ $0.1:0.5:1$ $0.1:0.5:1$ $0.1:1:1$ 初始条件	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.573.574.063.173.23$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: -σ ₂ 2.90 8.33 18.28 22.54 29.80 钢纤维掺量:	29.19 35.66 38.33 33.08 29.88 1.5%(H) $-\sigma_3$ 29.84 33.34 36.11 30.38 31.68 2.0%(H)	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) - - - - - - 3 * 32.18 34.49 38.53 30.87 31.02 日式(8c)计算)	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ \hline$
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.75:2\\ 0.1:0.2:2\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.2:2:0\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.2:2:0\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ 0.1:0.2:2:0\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ \hline\\ \hline\\ 0.1:0.2:2:0\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ \hline\\ \hline\\ 0.1:0.2:2:0\\ 0.1:1:1\\ \hline\\ \hline\\ \hline\\ \hline\\ \hline\\ \hline\\ 0.1:0.2:2:0\\ 0.1:1:1\\ \hline\\ \hline\\$	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.573.574.063.173.23-\sigma_1$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: -σ ₂ 2.90 8.33 18.28 22.54 29.80 钢纤维掺量: -σ ₂	29.19 35.66 38.33 33.08 29.88 1.5%(#) $-\sigma_3$ 29.84 33.34 36.11 30.38 31.68 2.0%($\#$ $-\sigma_3$	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) - 	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline $
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline\\ \hline\\$	$3.23 4.75 4.13 3.28 3.08 -\sigma_13.573.574.063.173.23-\sigma_13.23-\sigma_13.243.243.254.063.173.23-\sigma_13.243.254.063.173.23-\sigma_13.243.254.063.173.23-\sigma_13.243.254.063.173.23-\sigma_13.243.254.063.173.23-\sigma_13.243.25-\sigma_13.274.063.173.23-\sigma_13.23-\sigma_13.23-\sigma_13.23-\sigma_13.23-\sigma_13.23-\sigma_13.23-\sigma_13.23-\sigma_1-\sigma_13.24-\sigma_13.25-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_1-\sigma_2-\sigma_2-\sigma_2-\sigma_2-\sigma_1-\sigma_2-\sigma_2-\sigma_2-\sigma_2-\sigma_3-\sigma_2-\sigma_3-\sigma_2-\sigma_3-\sigma_3-\sigma_2-\sigma_3$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: 	29.19 35.66 38.33 33.08 29.88 1.5%(ff) - σ_3 29.84 33.34 36.11 30.38 31.68 2.0%(ff) - σ_3 31.66	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) - \sigma ₃ # 32.18 34.49 38.53 30.87 31.02 日式(8c)计算) - σ ₃ # 36.08	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ E_r \\ 7.8 \\ 3.4 \\ 6.7 \\ 1.6 \\ -2.1 \\ \hline \\ E_r \\ 14.0 \\ \end{array} $
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline \\ 0.1:0.75:1\\ 0.1:1:1\\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	$\begin{array}{c} 3.23 \\ 4.75 \\ 4.13 \\ 3.28 \\ 3.08 \\ \hline \\ \hline \\ 3.57 \\ 3.57 \\ 4.06 \\ 3.17 \\ 3.23 \\ \hline \\ \hline \\ -\sigma_1 \\ 3.23 \\ \hline \\ \hline \\ 3.49 \\ 3.75 \end{array}$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: -σ ₂ 2.90 8.33 18.28 22.54 29.80 钢纤维掺量: -σ ₂ 3.73 8.91	29.19 35.66 38.33 33.08 29.88 $1.5\%(\square$ $-\sigma_3$ 29.84 33.34 36.11 30.38 31.68 2.0%(\square $-\sigma_3$ 31.66 34.97	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) - \sigma ₃ H 32.18 34.49 38.53 30.87 31.02 日式(8c)计算) - σ ₃ H 36.08 36.56	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline 0.1:1:1\\ \hline 0.1:1:1\\ \hline 0.1:\sigma_2:\sigma_3\\ \hline 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.75:1\\ \hline 0.1:0.75:1\\ 0.1:1:1\\ \hline \hline 0.1:\sigma_2:\sigma_3\\ \hline 0.1:0.1:1\\ \hline 0.1:0.25:1\\ 0.1:0.1:1\\ \hline 0.1:0.25:1\\ \hline 0.1:0.1:1\\ 0.1:0.25:1\\ \hline 0.1:0.5:1\\ \hline 0.1:0.5:1\\$	$3.23 4.75 4.13 3.28 3.08 -\sigma_{1} 3.573.574.063.173.23-\sigma_{1} 3.493.754.18$	3.29 8.91 20.15 24.63 29.03 纲纤维掺量: $-\sigma_2$ 2.90 8.33 18.28 22.54 29.80 纲纤维掺量: $-\sigma_2$ 3.73 8.91 17.67	29.19 35.66 38.33 33.08 29.88 1.5%(fl) $-\sigma_3$ 29.84 33.34 36.11 30.38 31.68 2.0%(fl) $-\sigma_3$ 31.66 34.97 35.79	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) $-\sigma_3 *$ 32.18 34.49 38.53 30.87 31.02 日式(8c)计算) $-\sigma_3 *$ 36.08 36.56 38.43	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$
$\begin{array}{c} 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ 0.1:0.75:1\\ 0.1:1:1\\ \hline 0.1:1:1\\ \hline 0.1:\sigma_2:\sigma_3\\ \hline 0.1:0.1:1\\ 0.1:0.25:1\\ 0.1:0.5:1\\ \hline 0.1:0.75:1\\ \hline 0.1:1:1\\ \hline 0.1:0.4 & $$\ext{$$\$	$\begin{array}{c} 3.23 \\ 4.75 \\ 4.13 \\ 3.28 \\ 3.08 \\ \hline \\ \hline \\ 3.57 \\ 3.57 \\ 4.06 \\ 3.17 \\ 3.23 \\ \hline \\ \hline \\ 3.49 \\ 3.75 \\ 4.18 \\ 4.04 \\ \end{array}$	3.29 8.91 20.15 24.63 29.03 钢纤维掺量: $-\sigma_2$ 2.90 8.33 18.28 22.54 29.80 钢纤维掺量: $-\sigma_2$ 3.73 8.91 17.67 25.61	29.19 35.66 38.33 33.08 29.88 $1.5\%(fl)^{-\sigma_3}$ 29.84 33.34 36.11 30.38 31.68 2.0%(fl)^{-\sigma_3} 31.66 34.97 35.79 35.25	32.60 41.14 40.80 32.82 29.90 日式(8c)计算) $-\sigma_3 #$ 32.18 34.49 38.53 30.87 31.02 日式(8c)计算) $-\sigma_3 #$ 36.08 36.56 38.43 37.14	$ \begin{array}{c} 11.7 \\ 15.4 \\ 6.4 \\ -0.8 \\ 0.1 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$

					(续表)
初始条件	钅	羽纤维掺量	: 2.5%(由	式(8c)计算)
σ_1 : σ_2 : σ_3	$-\sigma_1$	$-\sigma_2$	$-\sigma_3$	−σ ₃ µ	E_r
0.1:0.1:1	3.09	2.77	26.83	29.26	9.0
0.1:0.25:1	3.10	6.55	29.88	28.50	-4.6
0.1:0.5:1	3.59	15.50	31.74	33.36	5.1
0.1:0.75:1	3.37	22.66	32.68	31.91	-2.4
0.1:1:1	4.11	30.40	30.10	35.35	17.4

由计算结果可知,该批试验数据较为准确, 没有太大的异常值,相对误差大于 10%的只有 6 个,占总数 36 个的 16.7%,且最大相对误差仅为 21.4%。

7 结论

(1)所建立的双剪三参数定解强度模型,可推导出 4 个平面特征试验点中所缺失的任意一个; 而通过双剪四参数和六参数的不定解多项式强度 模型,则分别建立了多轴特征强度参数间的关系 方程,并得到了多轴等拉强度相近而不相等的结 论;同时也表明了多轴强度是单轴强度的反映, 单轴强度则蕴含有多轴强度的特征。

(2)考虑初始边界条件并对静水应力公式进行 变换,得到了分别适于平面和空间应力在比例加 载条件下的简单的强度模型;而通过双剪四参数 的确定解模型,则给出了单侧压加载条件下的二 轴强度模型。

(3) 给出了在仅知单轴拉强度、压强度的极端 条件下,仍可计算出所有缺失的特征强度和任意 应力加载条件下的极限强度计算流程图。

(4)通过对普通混凝土、大骨料混凝土、钢纤 维混凝土和钢纤维轻骨料混凝土的多轴强度试验 数据的计算验证,表明了所提出的模型是合理的。

参考文献:

- Schickert G. Design of an apparatus for short time testing of concrete under triaxial load [J]. Concrete for Nuclear Reactors Journal, ACI Journal 1972, SP34-63, III: 1355-1376.
- [2] Rosenthal I, Glucklich J. Strength of plain concrete under biaxial stress [J]. ACI Journal, 1970(6): 903-914.
- [3] 过镇海, 王如琦, 张达成. 混凝土真三轴加载设备的研制[C]. 约束与普通混凝土强度理论及应用论文集. 烟台, 1987: 170-178.

Guo Zhenhai, Wang Ruqi, Zhang Dacheng. Development of true triaxial loading apparatus for concrete [C]. Strength Theory and Applications of Restricted and Ordinary Concrete. Yantai, 1987: 170-178. (in Chinese) [4] 蒋林华,谢年祥,林毓梅. 混凝土在二向应力下的强度 试验研究[C]. 约束与普通混凝土强度理论及应用论文 集. 烟台, 1987: 126-131.
Jiang Linhua, Xie Nianxiang, Lin Yumei. Experimental study on concrete under biaxial stress [C]. Strength

Theory and Applications of Restricted and Ordinary Concrete. Yantai, 1987: 126–131. (in Chinese)

- [5] 宋玉普, 沈吉纳. 多功能三轴混凝土试验系统[J]. 大 连理工大学学报, 1992, 32(4): 460-464.
 Song Yupu, Shen Jina. Multifunctional triaxial testing system for concrete [J]. Journal of Dalian University of Technology 1992, 32(4): 460-464. (in Chinese)
- [6] 赵东拂, 宋玉普, 李木国. 混凝土多轴疲劳试验系统与 试验技术[J]. 岩石力学与工程学报, 2004, 23(2): 187-191.

Zhao Dongfu, Song Yupu, Li Muguo. Multiaxial fatigue experimental apparatus of concrete and relevant technics [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 187–191. (in Chinese)

 [7] 俞茂宏. 混凝土强度理论及其应用[M]. 北京: 高等教 育出版社, 2002.
 Yu Maohong. Concrete strength theory and application

[M]. Beijing: Higher Education Press, 2002. (in Chinese)

- [8] Yu Maohong. General behavior of isotropy yield function [C]. Researches on the Twin Shear Stress Strength Theory. Xi'an: Xi'an Jiaotong University Press, 1988.
- [9] Yu M H, He L N, Song L Y. Twin shear theory and its generalized [J]. Scientia Sinica (Science in China), Series A, 1985, 28(11): 1174-1183.
- [10] Yu Maohong, He Lianan. A new model and theory on yield and failure of materials under complex stress state [C]// Mechanical Behaviour of Materials. Oxfoird: Pergamon Press; 1991, 3(6): 841-846.
- [11] 俞茂宏,李建春,张永强. 空间轴对称问题的统一特征 线理论[J]. 中国科学(E), 2001, 31(4): 323-331.
 Yu Maohong, Li Jianchun, Zhang Yongqiang. Unified characteristic line theory of space axial symmetry [J]. Scientia Sinica (Science in China), Series E, 2001, 31(4):

附录 A.

本文所用到的符号。

 σ_{12} 、 σ_{23} 、 σ_{13} 为双剪正应力。

 au_{12} 、 au_{23} 、 au_{13} 为双剪主切应力。

 $(f_t,0,0)$ 为主应力表达方式下的特征试验点, 其中应力符号表示为:拉"+",压"-",并有 $\sigma_1 \ge \sigma_2 \ge \sigma_3$ 。其他类同。 323-331. (in Chinese)

- [12] Yu Maohong. Unified strength theory and its applications[M]. Berlin, New York: Springer, 2004.
- [13] 杨健辉. 广义八面体理论体系的初步研究[R]. 武汉: 武汉大学, 2007.

Yang Jianhui. Pilot study on theoretical system of generalized octahedral element bodies [R]. Wuhan: Wuhan University, 2007. (in Chinese)

- [14] 宋玉普. 多种混凝土材料的本构关系和破坏准则[M]. 北京:中国水利水电出版社, 2002.
 Song Yupu. Constitutive relation and failure criterion of multi-kind concrete materials [M]. Beijing: China Water Power Press, 2002. (in Chinese)
- [15] 过镇海. 混凝土的强度和变形试验基础和本构关系
 [M]. 北京: 清华大学出版社, 1997.
 Guo Zhenghai. Strength and deformation of concrete, experimental foundation and constitutive relations [M].
 Beijing: Tsinghua University Press, 1997. (in Chinese)
- [16] Чече А А. Процность Бетона при Трехосном Равномерном Растяжении [J]. Бетон и Желеэобетон, 1979(6): 33-34.
- [17] 宋玉普. 钢筋混凝土有限元分析中的力学模型研究[D]. 大连: 大连理工大学, 1988.
 Song Yupu. Study on mechanical models of reinforced concrete in finite element [D]. Dalian: Dalian University of Technology, 1988. (in Chinese)
 [18] CD50010 2002, 温敏力体的沿计规模[S1] 体育, 中国
- [18] GB50010-2002, 混凝土结构设计规范[S]. 北京: 中国 建筑工业出版社, 2002.
 GB50010-2002, Code for design of concrete structures
 [S]. Beijing: China Architecture and Building Press, 2002. (in Chinese)
- [19] 覃丽坤. 高温及冻融循环后混凝土多轴强度和变形试验研究[D]. 大连: 大连理工大学, 2003. Qin Likun. Study on the strength and deformation of concrete under multiaxial stress after high-temperature or freeze-thaw cycling [D]. Dalian: Dalian University of Technology, 2003. (in Chinese)

 (f_t, f_c, f_u) 为三参数模型的一类边界条件,仅 以材料强度参数表示。实际应为 $(f_t, 0, 0)$ 、 $(0, 0, -f_c)$ 和 $(f_u, f_u, 0)$ 三个特征试验点。其他类 同。

$$\alpha = \frac{f_t}{f_c} \quad , \quad \overline{\alpha} = \frac{f_{cc}}{f_c} \quad , \quad \gamma = \frac{f_{tt}}{f_c} \quad , \quad \overline{\gamma} = \frac{f_{ttt}}{f_c} \quad ,$$

$$\lambda = \frac{J_{ccc}}{f_{c}}$$
表示量纲为1的材料特征强度试验参数。

 β_i , θ_i , ξ_i , ψ_i , χ_i , v_i 和 C_i 分别为多项 式强度模型中的待定系数和强度参数,其中 *i*=1,2,3,4,5,6。

 σ_m 为静水应力,或称为平均应力,或球应 力。

$$\omega_1 = \frac{\sigma_3}{\sigma_1}, \quad \omega_2 = \frac{\sigma_3}{\sigma_2}, \quad \omega_3 = \frac{\sigma_2}{\sigma_1} \\ \overline{\sigma_1} \oplus \overline{\sigma_1} \oplus \overline{\sigma_2}$$

力变换得到的比例加载条件下强度模型的初始边 界条件。

 $\sqrt{\sigma_{2in}\sigma_{2out}}$ 为二轴定侧压加载条件下的 σ_2 的 变换式,其中 σ_{2in} 为设定的输入侧压值,并以 $\sigma_{2in} = \phi f_c$ 表示, ϕ 为初始设定侧压比; σ_{2out} 为试 件破坏时输出的侧压值。其他类同。

 η_1 、 η_2 、 η_3 、 η_4 表示量纲为 1 的材料特征强 度估计参数。即 $f_{tt} = \eta_1 f_t$ 、 $f_{ttt} = \eta_2 f_t$ 、 $f_{cc} = \eta_3 f_c$ 和 $f_{ccc} = \eta_4 f_c$ 。

附录 B.

式(5c)推导过程中的中间步骤。

$$A_{1} = f_{t} + f_{tt}, \quad B_{1} = f_{t}^{2} + 2f_{t}f_{tt} + 4f_{tt}^{2},$$

$$A_{2} = f_{ttt} - f_{ccc}, \quad B_{2} = f_{ttt}^{2} - f_{ttt}f_{ccc} + f_{ccc}^{2},$$

$$D_{1} = \frac{1}{f_{cc}} - 2\frac{f_{c}}{f_{cc}^{2}}, \quad D_{2} = \frac{1}{f_{cc}} \left(3 - 2\frac{f_{c}}{f_{cc}}\right),$$

$$D_{3} = \frac{4}{3f_{cc}} \left(2 - \frac{f_{c}}{f_{cc}}\right), \quad D_{4} = 9 - 4\left(\frac{f_{c}}{f_{cc}}\right)^{2},$$

$$D_{5} = \frac{1}{2} \left(27f_{cc} - 8\frac{f_{c}^{3}}{f_{cc}^{2}}\right),$$

$$E_{1} = \frac{1}{f_{tt}} \left(1 - \frac{f_{c}}{f_{tt}}\right), \quad E_{2} = \frac{1}{f_{tt}} \left(1 + \frac{f_{c}}{f_{tt}}\right),$$

$$E_{3} = \frac{1}{3f_{tt}} \left(2 + \frac{f_{c}}{f_{tt}}\right), \quad E_{4} = 1 - \left(\frac{f_{c}}{f_{tt}}\right)^{2},$$

$$F_{5} = f_{tt} + \frac{f_{c}^{3}}{f_{tt}^{2}},$$

$$F_{1} = \frac{1}{f_{t}} \left(1 - 2\frac{f_{c}}{f_{tt}}\right), \quad F_{2} = \frac{1}{f_{t}} \left(1 + 2\frac{f_{c}}{f_{t}}\right),$$

$$F_{3} = \frac{4}{3f_{t}} \left(1 + \frac{f_{c}}{f_{t}}\right), \quad F_{4} = 1 - 4\left(\frac{f_{c}}{f_{t}}\right)^{2},$$

$$\begin{split} F_{5} &= \frac{1}{2} \left(f_{t} + 8 \frac{f_{c}^{3}}{f_{t}^{2}} \right), \quad G_{1} &= \frac{1}{18} \left(\frac{B_{1}}{A_{1}} - 48 \frac{B_{2}}{A_{2}} \right), \\ G_{2} &= \frac{1}{9} \left(\frac{4}{A_{1}} - \frac{3}{A_{2}} \right), \quad G_{3} &= \frac{2}{3} \left(\frac{1}{A_{1}} - \frac{1}{A_{2}} \right), \\ G_{4} &= \frac{2}{3} \frac{1}{A_{1}}, \\ M &= 6 \frac{2/f_{t} + 1/f_{tt}}{1/f_{ttt} - 1/f_{ccc}}, \quad H_{1} = 2(M - 3), \\ H_{2} &= M - 4, \quad H_{3} = 3f_{t}f_{tt} + Mf_{ttt}f_{ccc}, \\ R_{1} &= \frac{2D_{1} - E_{1}}{D_{4} - E_{4}}, \quad R_{2} = \frac{2D_{2} + E_{2}}{D_{4} - E_{4}}, \\ R_{3} &= \frac{D_{3} + E_{3}}{D_{4} - E_{4}}, \quad R_{4} = \frac{D_{5} + E_{5}}{D_{4} - E_{4}}, \quad J_{1} = 2 \frac{D_{1} - F_{1}}{D_{4} - F_{4}}, \\ J_{2} &= 2 \frac{D_{2} + F_{2}}{D_{4} - F_{4}}, \quad J_{3} = \frac{D_{3} + F_{3}}{D_{4} - F_{4}}, \quad J_{4} = \frac{D_{5} + F_{5}}{D_{4} - F_{4}}, \\ K_{1} &= \frac{E_{1} - 2F_{1}}{E_{4} - F_{4}}, \quad K_{2} = \frac{E_{2} - 2F_{2}}{E_{4} - F_{4}}, \quad K_{3} = \frac{E_{3} - F_{3}}{E_{4} - F_{4}}, \\ K_{4} &= \frac{F_{5} - E_{5}}{E_{4} - F_{4}}, \quad S_{1} = G_{2} - R_{3} + \frac{H_{2}}{H_{3}}(R_{4} - G_{1}), \\ S_{2} &= -G_{3} + R_{2} + \frac{H_{1}}{H_{3}}(G_{1} - R_{4}), \\ S_{3} &= -G_{4} - R_{1} + 6 \frac{R_{4} - G_{1}}{H_{3}}, \\ N_{1} &= G_{2} - J_{3} + \frac{H_{2}}{H_{3}}(J_{5} - G_{1}), \\ N_{2} &= -G_{3} + J_{2} + \frac{H_{1}}{H_{3}}(G_{1} - J_{5}), \\ N_{3} &= -G_{4} - J_{1} + 6 \frac{J_{5} - G_{1}}{H_{3}}, \\ P_{1} &= K_{2} + G_{3} + \frac{H_{2}}{H_{3}}(K_{4} - G_{1}), \\ P_{2} &= -K_{2} - G_{3} + \frac{H_{1}}{H_{3}}(G_{1} - K_{4}), \\ P_{3} &= -G_{4} - K_{1} + 6 \frac{K_{4} - G_{1}}{H_{3}} \circ \\ \end{array}$$

/

`